One of the greatest problems in today ‘s building is concrete degradation.
Industry and the amount of concrete structures requiring repair is rising globally. The patch repair method is one of the most effective tactics for the restitution of concrete structures subjected to corrosion protection. Patch repairs have to be sufficiently impermeable and free of cracks, designed to protect the existing framework from further ingress of aggressive agents and humidity from the environment. In directing the design and implementation of such systems, technical specifications for patch corrections are usually somewhat vague. In the process of selecting acceptable materials and implementation methods, the design engineer or false ceiling contractor also has to rely on personal judgment. Practical tools for patch design need to be created. Repairs to take account of the system’s structural properties, related environmental impacts and material parameters.

A prescriptive approach to the configuration of physical properties must be applied before detailed design procedures and requirements are established. Drying shrinkage, elastic modulus, relaxing characteristics, and tensile strength are the most extremely important properties for the provision of robust, crack-free patch repairs.


Concrete is one of the most oldest building materials for the construction industry and for construction development for many decades. However, the perception of concrete corrosion processes has advanced at a much slower pace, resulting in the need to repair an increasing number of structures. The technique of patch repair is particularly suitable for the needs emerging from the above and has been commonly used for the repair, lining and reinforcement of concrete structures. As a consequence, one of the most common methods of repair used in the building industry is concrete patch repair systems.

Patch repairs have often encountered significant performance issues in prior laboratory studies as well as in operation, which are primarily expressed in overlay cracking and/or debonding. These failures are primarily due to differential differences in volume between the substrate and the overlay, mainly caused by the consequences of shrinkage of the overlay. A broken overlay makes it possible for toxic substances to penetrate the concrete and trigger further degradation of the repair system and hence failure. Usually, the choice of patch repair materials is based on the availability, specifications for workability, and economic criteria. Compressive strength is always the only considered parameter in terms of design specifications. It increases as the material parameters most critical for crack resistance, such as shrinkage strain, relaxation properties, elastic modulus, and tensile strength, questions about the reliability of such repair systems are generally ignored. While the definition of durability parameters is progressively drawing attention in the design of new concrete structures, another aspect of equal significance, that of concrete repair durability, appears to have been largely overlooked. In multiple repair failures, the effects of this are obvious, visible in cracking, debonding, delamination, and spalling. Little or no data is always included in the repair material requirements provided by the company.

Properties of materials such as water absorption, thermal coefficients, or creep are available. The misrepresentation of time-dependent quantity shifts and the primary emphasis on material strength are possibly one of the key weaknesses of the repair materials industry. Practitioners and researchers alike have acknowledged the need for more realistic design guidelines for bonded concrete overlays and patch repair systems. That is the
It is important to recognise that bonded overlay output is not only a function of its material components, but also of how the components and the system as a whole relate to environmental influences. Therefore, it seems important to establish testing techniques for the forecasting of overlay durability for which overlays can be built to take account of the system’s structural behaviour, related environmental pressures and material characteristics. Reliable research methods are not currently prevalent. Therefore, a deeper basic understanding of the structural behaviour of bonded concrete overlays must be created. This paper suggests a prescriptive approach to the definition of material properties in order to mitigate premature repair deficiencies in the short to mid term. This strategy can be implemented before comprehensive procedures for analytic design are accessible.